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An S-set is an algebraic structure that generalizes an effect algebra. Unlike effect 
algebras, the tensor product of two S-sets always exists and this tensor product 
can be concretely represented. Morphisms are used to study relationships between 
S-sets and effect algebras. The S-set tensor product is employed to obtain 
information about effect algebra tensor products. 

1. INTRODUCTION 

Effect algebras (or D-posets) have been recently introduced as an axio- 
matic model for the foundations of quantum mechanics (Dvure~enskij and 
Pulmannovfi, 1994; Dvure~enskij and Rie~an, 1994; Foulis and Bennett, 1994; 
K6pka, 1982; K6pka and Chovanec, 1994; Navara and Ptfik, n.d.). Tensor 
products of effect algebras are important because they are used to describe 
coupled physical systems (Aerts and Daubechies, 1975; Foulis, 1989; Foulis 
and Randall, 1980; Zecca, 1978), and various investigations concerning the 
existence of tensor products have been conducted (Dvure~enskij, 1995; Foulis 
and Bennett, 1993; Pulmannov~, 1985). However, it has now been shown 
that the tensor product of two effect algebras need not exist (Gudder and 
Greechie, 1996). This suggests the following question: Is there a suitable 
generalization of an effect algebra for which tensor products always exist? 

To answer this question, we introduce a structure called an S-set. An 
S-set is a generalization of an effect algebra and the tensor product of two 
S-sets always exists. Unlike previous effect-algebra tensor-product existence 
proofs, our proof gives a concrete representation for the tensor product of 
two S-sets. We also use morphisms to study relationships between S-sets and 
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effect algebras. Finally, we employ S-set tensor products to obtain information 
about effect algebra tensor products. 

2. D E F I N I T I O N S  

A partial binary operation on a nonempty set P is a map O: D(G) --> 
P with domain D(O) C_ P X P. For simplicity, we write a �9 b for El) (a, b). 
An S-set is an algebraic system ~ = (P, 0, 1, O), where 0, 1 are distinct 
elements of P and �9 is a partial binary operation on P that satisfies the 

If (a, b) ~ D(G),  then (b, a) E D(O) and b �9 a = a G b. 
If (a, b) ~ D(O) and (a G b, c) E D(O), then (b, c) ~ D(G),  
(a, b O c )  ~ D ( O ) , a n d a O ( b O c )  = ( a O b )  O c .  

($3) For every a ~ P, there exists a b ~ P such that (a, b) E D(O) 
and a G b = 1. 

($4) For e v e r y a  E P,(0,  a) ~ D(O) a n d 0 G a  = a. 
($5) I f ( a , b )  ~ D(O) a n d a G b =  0, t h e n a  = b = 0 .  

If G satisfies S 1, $2, and $4, then ~ is a partial Abelian monoid (PAM) 
and if in addition �9 satisfies $5, then ~ is a positive PAM (Wilce, n.d.). 
Condition $3 ensures the existence of supplements. In particular, if a �9 b 
= 1, we call b a supplement of a and we denote the set of supplements of 
a by S(a). We denote the cardinality of a set A by I A I. An S-set that satisfies 
the following conditions is called an effect algebra (or D-poset) (Dvure~enskij 
and Pulmannovfi, 1994; Dvure~enskij and Rie~an, 1994; Foulis and Bennett, 
1994; K6pka, 1982; K6pka and Chovanec, 1994; Navara and Pt~ik, n.d.): 

($6) I f ( a ,  1) ~ D ( G ) , t h e n a  = 0 .  
($7) IS(a) l = 1 for every a E P. 

It can be shown that S 1-$3,  $6, and $7 imply $4 and $5, so $4 and $5 are 
redundant for effect algebras (Dvure~enskij and Pulmannovfi, 1994; Foulis 
and Bennett, 1994; Navara and Pt~ik, n.d.). We say that an S-set is total if 
�9 is a binary operation (D(O) = P X P). It follows from $6 that no nontrivial 
effect algebra is total. 

Example 1. Let X be a nonempty set and let P = 2 x be its power set. 
We define 0 = O and 1 = X. Letting e~ be an infinite cardinal, define 

D(G) = {(a, b) E P • P:l a n b[ --- a} 

and for (a, b) ~ D(O), define a �9 b = a U b. Then ) = (P, 0, 1, O) clearly 
satisfies S 1 and $3-$5 .  To prove $2, suppose that (a, b),(a �9 b, c) E D(O). 
Then l a n b l ----- a and 

](a n c) u (b n c) I = [(a U b) n cl <- o~ 

following conditions: 

(S1) 
($2) 
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Hence,  l a n c I, i b N c l --< or, and 

] a n  (b U c)[ = I(a n b) U ( a n  c)l-< I a n b I + [a N c I -< 2a  = a 

Thus, (b, c), (a, b @ c) ~ D(@) and a @ (b @ c) = (a @ b) @ c. If  IXl --> 
2, then ~ is an S-set that is not an effect algebra. If  I XI --< oL, then ~ is a 
total S-set and @ = U. If  [XI > a ,  then ~ is not total. 

Example 2. Let P = [0, 1] C R, define 0 = 0, 1 = 1, and a @ b = 
min{a + b, 1 } for all a, b s P. Then ~ = (P, 0, 1, @) clearly satisfies S 1 
and $ 3 - $ 5 .  To prove $2, if a + b + c -< 1, then 

( a @ b ) @ c = a  + b + c = a @ ( b @ c )  

and i f a  + b + c >  1, t h e n ( a @ b ) @ c  = 1 = a @ ( b @ c ) . T h u s , ~ i s a  
total S-set that is not an effect algebra. 

Example 3. Let H be a complex Hilbert  space and let P be the set 
of  linear operators on H that satisfy 0 ----- A --< I for  all A ~ P. Define 0 = 0, 
1 = I, and, for A, B ~ P, define 

A @ B = { A I  +B if  A + B ~ P  
if  A + B c t P  

Then, as in Example  2, it is easy to show that ~P = (P, 0, 1, @) is a total S- 
set that is not an effect algebra. 

Let  P and Q be S-sets. A map qb: P ---> Q is a morphism if  ~b(0) = 0, 
~b(1) = 1, and if (a, b) ~ D(@), then (qb(a), d~(b)) ~ D(@) and ~b(a) @ qb(b) 
= r �9 b). If  + is a bijective morphism and ~b -1 is a morphism, then r is 
an isomorphism. 

Let  P, Q, and R be S-sets. A map [3: P • Q --> R is called a bimorphism 
if  the following conditions hold: 

(1) 13(1, 1) = 1 and [3(0, b) = 13(a, 0) = 0 for all a ~ P, b E Q. 
(2) If  (a, b) e D(O) ,  then (13(a, c), 13(b, c)) ~ D(@) for all c E Q and 

13(a, c) @ 13(b, c) = 13(a @ b, c) 

(3) I f  (c, d)  ~ D(@), then (13(a, c), 13(a, d))  ~ D(@) for all a E P and 

13(a, c) @ [3(a, d) = 13(a, c @ d)  

It is interesting to note that a bimorphism 13: P X Q --4 R always satisfies 
the following apparently stronger conditions: 

(4) If  (a, b) E D(@), then (13(a, c), 13(b, d))  ~ D(O)  for all c, d E Q. 
(5) If  (c, d)  ~ D(@), then (13(a, c), [3(b, d))  ~ D( |  for all a, b ~ P. 
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For example,  to prove (4), suppose a, b E P and c, d E Q with (a, b) 
D(O).  Letting r ~ S(e),  d '  c S(d) ,  we have 

([3(a, c') @ [3(a, c), [3(b, d @ d')) = ([3(a, 1), [3(b, 1)) c D( |  

Hence,  

([3(a, c), [3(b, d)  G [3(b, d ' ) )  = ([3(a, c), [3(b, d �9 d ' ) )  e D(O)  

so ([3(a, c), [3(b, d))  E D(O).  The proof  of  (5) is similar. 
Due to the associativity of  O,  we can omit parentheses when writing 

the sum of  three or more elements of  an S-set when the sum exists. It easily 
follows that 

ax �9 "'" 0 an = all @ "'" @ ai n (2.1) 

for every permutation (i~ . . . . .  in) of  (1 . . . . .  n) when the sum on the left- 
hand side exists. Moreover,  

a 1 @ . . .  @ a n = (a 1 (~ . - .  @ ak) @ (ak+ 1 O " '" O an) (2.2) 

when the sum on the left-hand side exists. 
Let  P, Q, and T be S-sets and let -r: P • Q ~ T be a bimorphism. We 

say that (T, -r) is a t ensor  p r o d u c t  of  P and Q if  the following conditions 
are satisfied. 

(1) If R is an S-set and [3: P X Q --4 R is a bimorphism, then there 
exists a morphism do: T ~ R such that [3 = + o "r. 

(2) Every element of  T is a finite sum of  elements of  the form "r(a, b) 
wi th  a E P, b E Q. 

If P, Q are affect algebras, the definition o f  a tensor product  of  P and 
Q is similar. The only change is that T and R are assumed to be effect 
algebras. The next lemma shows that if a tensor product  exists, it is unique. 

L e m m a  2.1. If  (T, "r) and (T*, "r*) are tensor products of  P and Q, then 
there exists a unique isomorphism do: T --~ T* such that do('r(a, b)) = "r*(a, b) 
for all a e P , b  E Q. 

P r o o f  By definition of  tensor products, there exist morphisms dO: T ---) 
T* and dO*: T* ~ T such that "r* = dO o "r and "r = dO* o "r*. If  t e T, then t 
has the form 

Hence,  

t = "r(ab bl)  �9 "'" �9 "r b . )  

do* o qb(t) = do*[r o T(al, bl) �9 - "  @ r o "r(a., b.)] 

= +* ~ "r*(ab bl) G " "  G do* o "r*(a., b,,) 

= "r(al, bl) �9 " "  �9 "r(a., b.)  = t 
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Similarly, qb o +*(t*) = t* for every t* E T*. Thus, + is an isomorphism 
and applying Condition 2, we see that qb is unique. �9 

3. T E N S O R  P R O D U C T S  O F  S - S E T S  

In this section we show that the tensor product (T, "r) of  any two S-sets 
P and Q exists. Moreover, we give a concrete representation of (T, T). 

Theorem 3.1. I f P  and Q are S-sets, then their tensor product (T, "r) exists. 

Proof.  Let ~ ( P  X Q) be the set of all finite formal sums a~bl + " "  + 

a n bn, a i E P, b i E Q, ai 4: 0, bi 4= O, i = 1 . . . . .  n .  We identify two formal 
sums if they coincide except possibly for the order of their terms. A subsum 

of albt  + "'" + anbn is any A E ~ ( P  X Q) of the form 

A = aqbi l  + . . .  + aimbim 

where {il . . . . .  ira} C {1 . . . . .  n}. I rA = a l b l  + "'" + anbn ~ ~ ( P  X Q) 

and B = cld~ + " "  + cmdm ~ ~ ( P  X Q), we defineA + B ~ ~ ( P  X Q) by 

A + B = albl  + "'" + a~b~ + cldl  + "'" Cmdm 

with the convention that A + Q = A, where O E ~ ( P  X Q) is the empty 
sum. For A E f f (P  X Q) we define the following operat ions:  

(1) If ac  + bc is a subsum of A with (a, b) ~ D(O), replace ac + bc 

by (a | b)c. If (a @ b)c  is a subsum of A with a, b =P 0, replace (a @ b)c 

by ac + bc. 

(2) If ac + ad  is a subsum of A with (c, d) ~ D(O), replace ac + ad  

by a(c  @ d).  If a(c  �9 d )  is a subsum of A with c, d ~ 0, replace a(c @ d)  

by ac + ad. 

ForA, B E ~ ( P  X Q) ifA can be transformed into B by a finite sequence 
of operations, we write A -- B. It is clear that -- is an equivalence relation. 
We now observe that A -- A1 and B ~ B1 imply that A + B -- A1 + B1. 
Indeed, on A + B we first apply the sequence of operations that takes A into 
A1 and then apply the sequence of operations that takes B into B1. 

Let ~-(P X Q) = {A ~ ~ ( P  x Q): A - 11}. Notice that for every a 
E P, b s Q, a, b =~ 0, there exists an A ~ ~ ( P  x Q) such that ab is a term 
of A. Indeed, let a'  E S(a),  b '  E S(b)  and le tA = ab + a ' b  + l b ' .  Then 

A - ( a @ a ' ) b  + l b '  = lb  + l b '  ~ l ( b G b ' )  = 11 

so A E ~-(P X Q). Denote the set of all subsums of elements of ~ ( P  X Q) 
by %(P x Q). For A ~ %(P X Q) we define the equivalence class 

1-[(,4) = {B ~ ~ ( P  X Q): B ~ A} 
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Notice that if B ~ II(A), then B ~ %(P X Q). Indeed, there exists a C 
~ ( P  X Q) such tha tA  + C ~ g-(P x Q) .Hence,  B + C - - A  + C - -  11, 
so B + C E ~-(P • Q). Hence, B E %(P X Q). Also, if A ~ %(P X Q) 
and if A1 is a subsum of A, then A1 ~ %(P X Q). 

Using the notation 11(11) = 1, we have II(E) = 1 for every E 
~-(P X Q). Using the notation I / (O) = 0, we have {0} = 0. Letting 

T = H(P  x Q) = {H(A): A ~ %(P X Q)} 

we have 0, 1 ~ T. We define a partial binary operation O: D(@) ~ T, D(O) 
C T X T, as follows: 

D(O) = {(II(A), II(B)): A + B E %(P X Q)} 

and if (II(A), II(B)) ~ D(G), then II(A) �9 1/(B) = 1/(A + B). To show that 
Q is well defined, suppose A1, B1 E %(P X Q) and A1 -- A, B1 -- B. Then 
A1 + B 1 - - A  + B. Hence, Al + Bl ~ %(P X Q) if and only if A + B 
%(P X Q) and in this case II(A1 + B1) = II(A + B). 

We now show that (T, 0, 1, O) is an S-set. First, 0 4: 1, since otherwise 
-- 11 and this is clearly impossible. It is clear that �9 is commutative. 

Suppose that 

(rI(A), 1/(B)), (1/(A) �9 II(B), 1/(6')) E D(O) 

ThenA + B + C ~ %(P X Q) and (H(A) �9 H(B)) �9 rI(C) = II(A + B + 
C). Hence, B + C E %(P • Q) and H(B) �9 H(C) = H(B + C). Again, 
(II(A), II(B) �9 FI(C)) E D(O) and H(A) �9 (H(B) �9 II(C)) = II(A + B + 
C). I f A  E %(P • Q), then there exists a B E %(P • Q) such that A + B 

11. Hence, (II(A), II(B)) ~ D(O) and 

II(A) �9 H(B) = II(A + B) = 11(11) = 1 

so Condition ($3) holds. Since ~3 + A = A, we have (0, II(A)) ~ D(O) for 
every II(A) E T and 0 + H(A) = II(O) + II(A) = II(A), so Condition ($4) 
holds. Finally, to show that $5 holds, suppose (II(A), II(B)) ~ D(O) and 
II(A) �9 II(B) = 0. Then II(A + B) = 0, so A + B = Q. Hence, A = B = 
Q = 0 .  

Define the map "r: P X Q --) T by ~'(a, b) = H(ab) whenever a, b r 0 
and "r(a, b) = 0 otherwise. This is consistent because we have shown that 
ab ~ %(P • Q) whenever a, b # 0. Then ~(1, 1) = I I ( l l )  --- 1 and ~(0, b) 
= ' r ( a ,  0 ) = 0 f o r e v e r y a  E P ,b  E Q. Le t a ,  b ~ P , c  E Q w i t h a ,  b, c 4 :  
0 and (a, b) ~ D(O). Then for c' ~ S(c) and (a �9 b)' ~ S(a �9 b) we have 

ac + bc + ac' + bc' + ( a O b ) ' l  
a(c �9 c') + b(c �9 c') + (a 0 b) ' l  

= al + bl + (a O b)' - (a O b)l + ( a O b ) ' l -  11 
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Hence, ac + bc e %(P X Q), so (II(ac), II(bc)) e D(O)  and 

II(ac) �9 II(bc) = 1](ac + bc) = II((a ~ b)c) 

Therefore, ('r(a, c), "r(b, c)) e D(O) and r(a, c) �9 7(b, c) = "r(a �9 b, c). If 
a, b, or c is 0, we proceed in a similar way. Similarly, if a e P and b, c �9 
Q with (b, c) e D(G), then ('r(a, b), "r(a, c)) E D(O) and "r(a, b) �9 "r(a, c) 
= "r(a, b �9 c). We conclude that "r is a bimorphism. To show that "r(P X Q) 
generates T, let II(A) E T, where A = albl + " "  + a.b,,. Then 

YI(A) = I-[(albl) @ - "  @ YI(a.bn) = "r(ab bl) @ "'" @ "r(a., b.)  

Finally, to show that (T, -r) is the tensor product of P and Q, let R be 
an S-set and let [3: P x Q ~ R be a bimorphism. Let A, B E ~ ( P  X Q), 
where A = a~b~ + " "  + a,,b,,, B = efl~ + , . -  + c,,fl,., and suppose that 
A -- B. We shall show that if [3(ab bl) �9 . - .  G [3(a., b.) exists, then [3(cl, 
dl) G " "  �9 B(c,,,, din) exists and the two expressions coincide. Indeed, if 
we can transform A into B by a single operation, then B has the form 

(al �9 az)bl + a3b3 + "'" + a,,b,, 

where b2 --- b~, or the form 

cbl + dbl + a2b2 + " "  + a,,b,, 

where c �9 d = a~. In the first case, we have 

~(al @ a2, bl) �9 [~(a3, b3) @ "'" �9 [3(an, bn) 

: ~(al, bl) �9 [3(a2, b2) G "'" �9 [3(a., bn) 

and in the second case, we have 

13(c, bl) G ~(d, bl) Q [3(a2, bz) O " ' "  �9 [3(a,, b,,) 

= 13(c O d, bl) O 13(a2, b2) @ "'" ~ ~(an, bn) 

= [3(al, bl) �9 [3(a~, b2) G . . .  G ~(an, bn) 

The result now follows by induction on the number of operations. Applying 
this result, we conclude that for any a~b~ + . . .  + a,,b,, ~ ~-(P • Q) we have 

[3(a~, b0  �9 "'" G [3(a~ b.) = l 

It follows from (2.2) that i fA = cld~ + " .  + cmdm E %(P X Q), then [3(cb 
dl) �9 " "  �9 f$(Cm, dm) is defined and we define ~b: T --4 R by 

~b(lq(A)) = ]3(ct, dO �9 "'" G [3(Cm, din) 

if A 4: Q and otherwise +(0) = 0. Our previous result shows that + is well 
defined. To show that +: T--> R is a morphism, we have ~b(1) = [3(1, 1) -- 1. 
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Suppose that II(A), If(B) E T, and (II(A), If(B)) ~ D(O). Letting A = albl 
+ " "  + anbn and B = Old1 + "'" + cmdm, we have that A + B ~ ~ ( P  • 

Q) and applying (2.2) gives 

~b(II(A) G II(B)) = ~b(II(A + B)) 

= 13(ab b0  �9 "'" �9 [3(a,, bn) �9 13(cl, dl) 

@ " ' "  @ 13(Crn, dm) 

= ~b(ii(A)) @ ~b(II(B)) 

Finally, to show that 13 = ~b o % we have for a, b # 0 that 

+[a'(a, b)] = ~b[II(ab)] = 13(a, b) 

and if a or b is 0, then ~b['r(a, b)] = 0 = 13(a, b). �9 

Let P and Q be S-sets and let T be their tensor product space as con- 
structed in Theorem 3.1. Using the notation in the proof of Theorem 3.1, let 
A,  B s ~ ( P  X Q). The maximal (in length) common subsum of A and B is 
denoted A n B. (Of course, A n B could be 0 . )  We then have A = Al + 
A n B a n d B  = Bl + A  n B for some A a, B1 ~ %(P X Q). We then use 
the notation A~ = A - A n B, B1 = B - A N B. The next corollary 
characterizes those T that are effect algebras. Moreover, if P and Q are effect 
algebras, it gives a sufficient condition for the existence of their effect algebra 
tensor product. This condition may be useful for establishing the existence 
of effect algebra tensor products for particular examples. 

Corollary 3.2. (1) T is  an effect algebra if and only i fA - A n B -- B 
- A n B for every A, B ~ ~-(P • Q). (2) If P and Q are effect algebras 
and i f A - A  n B - - B - A  n B for every A, B ~ ~ ( P  X Q), then their 
effect algebra tensor product exists and equals (T, r). 

Proof (1) Suppose A - A n B -- B - A n B for every A, B E ~ ( P  
X Q ) . I f A  + C , B  + C e ~-(P X Q), since C is a subsum of (A + C) n 
(B + C), it follows that A ~ B. Now suppose A, B, C e %(P X Q) and 

H(A) | If(B) = 1 = II(A) @ H(C) 

Then A + B, A + C a ~ ( P  X Q), so by the above, B - C. Hence, H(B) 
= II(C), so ($7) holds for T. Next, suppose (II(A), 1) ~ D(O). Then A + 
11 E %(P X Q), so there exists a B  E %(P X Q) such that B + A + 11 
S-(P • Q). Since O + 11 E 2Y(P • Q), we have B + A - O. Hence, B = 
A = O, so II(A) = 0 and ($6) holds for T. Conversely, suppose T is an effect 
algebra and A, B e ~'(P X Q). Then 
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H ( A - A  N B )  O1](A N B )  = 1 = I I ( B - A  N B )  O I I ( A  N B )  

Applying the cancellation law (Foulis and Bennett, 1994), we have II(A - 
A n B) = l q ( B - A  n B ) , s o A  - A n  B - - B - A  N B .  

(2) If the condition holds, then T is an effect algebra, so (T, -r) is the 
effect algebra tensor product of P and Q. �9 

4. S-SETS AND E F F E C T  A L G E B R A S  

In this section we use morphisms to study relationships between S-sets 
and effect algebras. We also employ S-set tensor products to obtain informa- 
tion about effect algebra tensor products. Our first result shows that an S- 
set is an effect algebra if and only if it admits an injecfive morphism into 
an effect algebra. 

Lemma 4.1. If P is an S-set, R is an effect algebra, and there exists an 
injective morphism ~b: P ---> R, then P is an effect algebra. 

Proof. For a ~ P there exists a b ~ P such that (a, b) ~ D(•) and a 
�9 b = 1. Suppose (a, c) E D(O) and a �9 c = 1. Then (~b(a), ~b(b)), (~b(a), 
~b(c)) ~ D(G) and 

qb(a) �9 ~b(b) = 1 = qb(a) �9 ~b(c) 

Applying the cancellation law (Foulis and Bennett, 1994), we conclude that 
qb(c) = qb(b). Since qb is injective, c = b, so IS(a) l = 1. Suppose a s P 
with (a, 1) ~ D(O). Then (d~(a), 1) E D(O), so ~b(a) = 0. Since {b is injective, 
a = 0 .  �9 

A subset P1 of an S-set P is a sub-S-set of P if PI satisfies the follow- 
ing conditions: 

(1) 0, 1 ~ P1- 
(2) If a, b e P1 with (a, b) ~ D(@), then a �9 b E Pl. 
(3) If a ~ P~, then there is a b ~ Pl such that (a, b) e D(O) and a 

@ b = l .  

If P is an effect algebra and P1 C P, then P1 is a sub-effect algebra of 
P if P~ is a sub-S-set of P. In this case (3) can be replaced by the simpler 
condition: if a E P~, then a '  E PI. It is easy to verify that a sub-S-set P~ 
with @ restricted to P~ is an S-set. The same holds for a sub-effect algebra. 
If  P and Q are S-sets, then a morphism d~: P --+ Q is strong if  (qb(a), {b(b)) 

D(O) implies that there is a c e P such that r  = qb(a) @ d~(b). 

Lemma 4.2. If P and Q are S-sets, then a morphism qb: P ---> Q is strong 
if and only if ~b(P) is a sub-S-set of Q. 
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Proof Suppose qb(P) is a sub-S-set of Q. If (~b(a), ~b(b)) ~ D(O), then 
~b(a) �9 +(b) E qb(P). Hence, there is a c E P such that d~(c) = qb(a) �9 r 
so + is strong. Conversely, suppose that ~b: P ~ Q is strong. Then 0 = qb(0) 

+(P) and 1 = qb(1) E d~(P). If (r qb(b)) ~ D(O), then there is a c E 
P such that ~b(a) �9 ~b(b) = qb(c) ~ ~b(P). Finally, if ~b(a) E qb(P), then there 
is a b E P such that (a, b) ~ D(O) and a �9 b = 1. Hence, (+(a), +(b)) E 
D(O) and qb(a) �9 +(b) = 1. �9 

We have seen in Lemma 4.1 that if an S-set P has an injective morphic 
image in an effect algebra, then P is an effect algebra. If such an image does 
not exist, does P still "contain" an effect algebra? More precisely, does there 
exist an equivalence relation ~ on P such that P/~ can be organized into 
an effect algebra and the canonical map r = [a]= is a morphism? A 
necessary condition for this to hold is that there exists a surjective morphism 
qb: P ~ R where R is an effect algebra. We now show that this condition 
is sufficient. 

To begin, let P and Q be S-sets and let qb: P ~ Q be a surjective 
morphism. For a, b E P, we write a ~ b if ~b(a) = ~b(b). It is clear that 
is an equivalence relation and we denote the equivalence class containing a 
by [a]. Using the notation 

P/+ = {[a]: a ~ P) 

we define the canonical surjective t~: P ---) P___/+ by t~(a) = [a] and the map 
-~: Pld~ ---) Q by ~([a]) - -+(a) .  Notice that r is well defined. We define the 
partial binary operation �9 on P/~b as follows. Declare that ([a], [b]) ~ D(O) 
if (~b(a), +(b)) ~ D(O) and in this case [a] �9 [b] = [c], where c ~ P satisfies 
+(c) = r �9 ~b(b). Again we see that �9 is well defined. 

Theorem 4.3. If P and Q are S-sets and ~b: P ---) Q is a surjective 
morphism, then ~ = (P/+, [0], [1], 0 )  is an S-set, 4: P_-~ P/+ is a surjective 
morphism, qb: P/d~ ~ Q is an isomorphism, and ~b = qb o t~. 

Proof It is clear that [0] v~ [1] and that S1 holds for ~ .  To show that 
satisfies $2, suppose ([a], [b]), ([a] �9 [b], [c]) e D(O). Then (~b(a), qb(b)) 
D(O) and [a] �9 [b] = [d], where ~b(d) = ~b(a) �9 qb(b). Moreover, (~b(d), 

+(c)) ~ D(O) and 
- -  - -  i 

([a] �9 [b]) �9 [c] = [d] �9 [c] = [e] 

where r = r  �9 r Then (r r (r r �9 r E 
D(O) and 

r @ (r �9 r = (r �9 r @ 6(c) = r 

Letting r  = r �9 r we have ([b], [c]) E D(O) and [b] �9 [c] = 
[f]. Moreover, ([a], [b] �9 [c]) ~ D(O) and 
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[a] �9 ([b] �9 [c]) = [e] 

To verify $3 for ~', let [a] ~ P/d). Then there exists a b E P such that 
(a, b) ~ D(O) and a �9 b = 1. Then (d)(a), d)(b)__) ~ D(O)  and d)(a) �9 d)(b) = 
d)(1) = 1. Hence, ([a], [b]) ~ D(O) and [a] �9 [b] = [1]. To show that 
satisfies $4, it is clear that ([0], [a]) ~ D(O) and [0] | [a] = [a] for all a 
E P. Finally, to show that @ satisfies $5, suppose that ([a], [b]) ~ D(O) 
and [a] G [b] = [0]. Then (r r E D(O) and d)(a) �9 d)(b) = 0. 
Hence, d)(a) = d)(b) = 0, so [a] = [b] = [0]. We conclude that @ is an S-set. 

To verify that t b is a morphism, suppose (a, b) ~ D(G).  Then(d)(a) ,  
d)(b)) ~ D(O) and d)(a �9 b) = d)(a) �9 d)(b). Hence, ([a], [b]) ~ D(O) and 

t~(a @ b) = [a G b] = [a] �9 [b] = qJ(a) �9 t~(b) 

To show that + i s a  morphism, suppose ([a], [b]) E D(O).  Then (d)(a), d)(b)) 
D(G)  and [a] �9 [b] = [c], where d)(c) = d)(a) G d)(b). Hence, 

d)([a] �9 [b]) = d)([c]) = d)(c) = d)(a) �9 d)(b) = d)([a]) �9 d)([b]) 

To show that ~ is injective, we have_ ~([a])  = +([b]) implies d)(a) = d)(b), 
so [a] = [b]. Finally, if (d)([a]__), d)([b])) ~ D(O), then (d)(a), d)(b)) ~ D(O), 
so ([a], [b]) E D(O) and [a] �9 [b] = [c], where d)(c) = d)(a) �9 d)(b). Hence, 

d)-l(d)([a]) �9 d)([b])) = d)-l(d)([c])) = [c] = [a] �9 [b] 

= d)-l(d)([a])) �9 d)-I(d)([b])) 

Thus, ~ is an isomorphism and it is clear that d) = ~ o r �9 

Notice that a similar theorem holds if  d): P ~ Q is a strong morphism. 
The only difference is that now d): P/d~ ~ d)(P) is an isomorphism. 

Corollary 4.4. Let P be an S-set, R an e f fec t  algebra, and d): P ~ R 
a surjective morphism. Then ~' = (P_/d), [0], [1], O)  is an effect algebra, t~: 
P -2_ P/d) is a surjective morphism, do: P/d) ~ R is an isomorphism, and 4) 
= d ) o r  

Proof. It follows from Theorem 4.3 that ~ is an S-set and it suffices to 
show that ~ is an effect algebra. To verify $6 for ~', suppose that ([a], [1]) 

I 

D(O). Then (d)(a), 1) E D(O) and since R is an effect algebra, d)(a) = 
0. Hence, [a] = [0]. To verify $7 for 9 ~, let [a] ~ P/d). Since ~_is an S-set, 
there exists a [b] ~ P / r  that ([__a], [b]) ~ D(O) and [a] �9 [b] = [1]. 
Suppose ([a], [c]) e D(O) and [a] �9 [c] = [1]. Then 

d)(a) O d)(b) = 1 = d)(a) �9 d)(c) 

Since R is an effect algebra, the cancellation law (Foulis and Bennett, 1994) 
gives d)(c) = d~(a). Hence, [c] = [b], so I S([a])l = 1. �9 
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If P and Q are effect algebras, it is known that their effect algebra tensor 
product need not exist (Gudder and Greechie, 1996). We now characterize 
the existence of their effect algebra tensor product in terms of their S-set 
tensor product, which always exists. 

Lemma 4.5. Let P and Q be effect algebras and let (T, -r) be their S-set 
tensor product. Then their effect algebra tensor product exists if and only if 
there exists a morphism s T ---) R where R is an effect algebra. 

Proo f  Suppose the effect algebra tensor product (T, ~) of P and Q exists. 
Then by definition of (T, "r), there exists a morphism +: T ---> T. Conversely, 
suppose there exists a morphism qb: T ---> R, where R is an effect algebra. 
Then + o "r is a bimorphism from P • Q into R. It follows from Dvure~enskij 
(n.d.) that the effect algebra tensor product of P and Q exists. �9 

Let P and Q be effect algebras and let (T, "r) be their S-set tensor product. 
Suppose that their effect algebra tensor product (T, 4) exists. Then there 
exists a unique morphism ~b: T ---> 7" such that ~ = 4) o "r. In this way, we 
can obtain (T, ~-) from (T, -r). The next result gives more information if 
is strong. 

Lemma 4.6. If 4): T ---> T is a strong morphism, then (T/+, [0], [1], O)  
is an effect algebra and (T/+, t~ o "r) is the effect algebra tensor product of 
P and Q. 

Proo f  It follows from Lemma 4.2 and Corollary 4.4 that (T/~b, [0], [1], 
O) is an effect algebra and that ~: T/+ --> +(T) C T is an isomorphism. It 
thus suffices to prove that qb(T) --- 7". Let s E 7". Since ~(P • Q) generates 
T, there exist ai e P, bi e Q, i = 1 . . . . .  n, such that 

s = ~'(al, bl) G . . .  �9 T(an, bn) = ~b o T(al ' bl) �9 "'" �9 ~ o "r(an, bn) 

But since 4) is strong, there exists a t e T such that +(t) = s. �9 
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